The theory of everything (TOE) is a putative theory of theoretical physics that fully explains and links together all known physical phenomena, and, ideally, has predictive power for the outcome of any experiment that could be carried out in principle.
Initially, the term was used with an ironic connotation to refer to various overgeneralized theories. For example, a great-grandfather of Ijon Tichy—a character from a cycle of Stanisław Lem's science fiction stories of the 1960s—was known to work on the "General Theory of Everything". Physicist John Ellis claims to have introduced the term into the technical literature in an article in Nature in 1986. Over time, the term stuck in popularizations of quantum physics to describe a theory that would unify or explain through a single model the theories of all fundamental interactions of nature.
There have been many theories of everything proposed by theoretical physicists over the last century, but none have been confirmed experimentally. The primary problem in producing a TOE is that the accepted theories of quantum mechanics and general relativity are hard to combine. Their mutual incompatibility argues that they are incomplete, or at least not fully understood taken individually. (For more, see unsolved problems in physics).
Based on theoretical holographic principle arguments from the 1990s, many physicists believe that 11-dimensional M-theory, which is described in many sectors by matrix string theory, in many other sectors by perturbative string theory is the complete theory of everything, although there is no widespread consensus and M-theory is not a completed theory but rather an approach for producing one.
New discoveries
The search for a unifying theory was interrupted by the discovery of the strong and weak nuclear forces, which could not be subsumed into either gravity or electromagnetism. A further hurdle was the acceptance that quantum mechanics had to be incorporated from the start, rather than emerging as a consequence of a deterministic unified theory, as Einstein had hoped. Gravity and electromagnetism could always peacefully coexist as entries in a list of Newtonian forces, but for many years it seemed that gravity could not even be incorporated into the quantum framework, let alone unified with the other fundamental forces. For this reason, work on unification for much of the twentieth century, focused on understanding the three "quantum" forces: electromagnetism and the weak and strong forces. The first two were unified in 1967–68 by Sheldon Glashow, Steven Weinberg, and Abdus Salam as the "electroweak" force. However, while the strong and electroweak forces peacefully coexist in the Standard Model of particle physics, they remain distinct. Several Grand Unified Theories (GUTs) have been proposed to unify them. Although the simplest GUTs have been experimentally ruled out, the general idea, especially when linked with supersymmetry, remains strongly favored by the theoretical physics community.
0 comments:
Post a Comment